

    
      
          
            
  
But I never wanted to do DevOps!

You can be a Python web programmer and not have to do anything with DevOps, by making use of containerisation
technology and Platform-as-a-service systems.

This hands-on workshop will expand your repertoire and put new components in your developer’s toolbox - and will help
ensure you never find yourself having to answer to a pager in the middle of the night.

The examples and exercises in the workshop will be based on a workflow using:


	Docker [http://docker.com], with the


	Divio Cloud platform [http://divio.com] and


	Amazon Web Services [https://aws.amazon.com].




We will also work with:


	Django [https://djangoproject.com]


	Django reusable applications including Django Axes [https://github.com/jazzband/django-axes] and Django
Photologue [https://django-photologue.readthedocs.io/en/stable/]


	LogDNA [https://logdna.com] and Azure cognitive services [https://azure.microsoft.com/en-gb/]


	system-level libraries for image handling and processing




… and other tools, but it’s about skills, not tools - and all the
skills are transferable. The purpose of the workshop is to help you become
familiar with a mindset and way of working that:


	allows you to stop worrying about servers and deployment


	… by making use of services that take care of that for you.





Who is this for?

This workshop has been written for the Python developer who likes programming, but would like to give the
responsibility for configuration and maintenance of hardware, operating systems, databases, web servers and other
important things that a website needs to someone else.

Containerisation is an excellent way to do that - but then you have to learn some new tricks, and abandon some old
habits and ways of working. This workshop is intended to ease you along that path.

It’s what I wish I had discovered several years ago, when I was exactly in that position.




Before you start



	Prerequisites








Workshop steps

The pages in this section cover what you will do. In this workshop, you will learn by doing. Understanding always
comes after doing. I will not explain much in this section, but the exercises are designed to help you discover
key principles. Occasionally, links will be provided to Further reading sections. These are optional, and it’s
recommended to use them after you have successfully done the relevant tasks.



	The workshop
	Installation

	Create a project to work with

	Deploy your project

	Set up and run your project up locally

	Control the local project with docker-compose

	Explore the local environment

	Edit the Dockerfile

	Install a new Python package

	Deploy your changes to the cloud

	Further development

	Explore file handling

	Using an external service

	A complete example workflow












Further reading

The pages in this section contain optional, additional explanation. The secret of learning is that you don’t need to
understand the thing you are learning - doing is far more valuable. All the same, once you have learned some basic
things you will be ready for deeper explanation. The pages in this section are all linked to from pages in the previous
section.



	Further reading
	What happens when a project is created

	What happens during the Docker deployment process

	What happens during the local set-up process

	The docker-compose.yml file

	The Dockerfile

	Ways of thinking

	Some practical implications of containerisation

	Some Divio-specific notes















          

      

      

    

  

    
      
          
            
  
Prerequisites


Required software

You will need to have the following installed or configured, and know at least the basics of using them, before
proceeding:


	Git (GitHub’s set up Git guide [https://help.github.com/en/github/getting-started-with-github/set-up-git])


	SSH, so that you can provide your public key to a server (GitHub’s guides to setting up SSH [https://help.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh])







Hardware requirements

Please check the Docker hardware requirements below. It is possible to use older hardware and software, using
Virtual Box and Docker Toolbox - but it can require quite a bit of extra work to set up.


Macintosh users [image: '']


	a 2010 or newer model. Run the command sysctl kern.hv_support to check for the required hardware
virtualisation support (the response should be 1).


	macOS Sierra 10.12 or newer







Windows users [image: '']


	virtualisation enabled in BIOS


	Windows 10 64bit Pro, Enterprise or Education







Linux users [image: '']

You’ll probably be OK…









          

      

      

    

  

    
      
          
            
  
The workshop


Note

Before starting, please see Before you start.





	Installation

	Create a project to work with

	Deploy your project

	Set up and run your project up locally

	Control the local project with docker-compose

	Explore the local environment

	Edit the Dockerfile

	Install a new Python package

	Deploy your changes to the cloud

	Further development

	Explore file handling

	Using an external service

	A complete example workflow









          

      

      

    

  

    
      
          
            
  
Installation

You will need to install:


Docker and Docker Compose


	Macintosh users: Docker for Mac [https://docs.docker.com/docker-for-mac/]


	Windows users: Docker for Windows [https://docs.docker.com/docker-for-windows/]


	Linux users: Docker CE [https://docs.docker.com/install/#server] and Docker Compose [https://docs.docker.com/compose/install/]







The Divio CLI

(You can install the Divio CLI in a virtual environment if you prefer.)


	the Divio CLI [https://github.com/divio/divio-cli]: pip install divio-cli










          

      

      

    

  

    
      
          
            
  
Create a project to work with


Note

Before starting, please see Before you start.



Using the Divio Control Panel (you will need an account, it’s free), create a new project [https://control.divio.com/control/project/create].

Select the defaults:


	Platform: Python 3.6


	Type: Django




You can use Divio’s Git server (also the default).

Hit Skip in the Subscription view.

After a few moments, you’ll be presented with its dashboard, which will look something like this:

[image: 'New project in the Dashboard']

Explanation

Further reading: What exactly happens on Divio when a project is created?







          

      

      

    

  

    
      
          
            
  
Deploy your project

The project exists, but isn’t actually running yet. Let’s deploy it: hit Deploy for the test server.

[image: 'New project in the Dashboard']
This will take about three or four minutes.


Visit the Test site

You can use the link in the Control Panel to access the Test server of your project.

[image: 'The project site link']
You can now log in to the Django admin.

[image: 'Log in with Divio']

Explanation

Further reading: What exactly happens on Divio when a project is deployed?









          

      

      

    

  

    
      
          
            
  
Set up and run your project up locally


Introducing


	divio login


	divio project list


	divio project setup


	docker-compose up






The next step is to set up your project on your own computer, for development purposes and also to understand better
how the system works.

For this, we will use the Divio CLI that you installed in the Installation section.


Log in with the CLI

Run:

divio login





This will fetch a token from https://control.divio.com/account/desktop-app/access-token/.




Upload your public key to the Divio Control Panel

Upload your public key to https://control.divio.com/account/ssh-keys/


Note

If you need help with setting up public keys, see GitHub’s excellent guide [https://help.github.com/en/github/authenticating-to-github/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent].






Set up your project locally

Get your project’s slug from the Control Panel:

[image: 'Project slug']
Or you can see it by listing your projects:

divio project list





Set up the project:

divio project setup <project slug>





This will build your project.


Explanation

Optional further reading: What happens during the set-up process of a Divio project?




Run the local site with docker-compose up

cd into the project directory, and to get the site up and running, execute:

docker-compose up





You should be able to log in to your site at http://localhost:8000.

docker-compose up is one of the key commands for working with your Docker project locally.




Stop the project

If you hit control-c in the console when the project is running, it will stop it.









          

      

      

    

  

    
      
          
            
  
Control the local project with docker-compose


Introducing


	docker-compose stop


	docker-compose build






docker-compose is a command that uses the project’s docker-compose.yml file to control the local project. The
docker-compose.yml file contains information about how the project should be built, what containers should be
created, how they should be linked to each other, and so on.


docker-compose up and stop

You already know docker-compose up, which runs your project. If you hit control-c in the console, it will stop
it.

Another way to stop it is by executing docker-compose stop in the same directory.




docker-compose build

When you created the project the first time, you built it locally. Sometimes you need to rebuild a project (for
example, if you made a change to its requirements) with docker-compose build.

Try it.

Look at the output:

➜  docker-compose build
db uses an image, skipping
Building web
[...]





It builds the web container, but skips building the db container. That’s because it doesn’t need to. The db
container, as you will see from the docker-compose.yml file, uses an off-the-shelf image. In Docker, images can be
built and saved for re-use, saving time and making things repeatable.

Now that you know how to stop, start and build a local project, we are going to enter the local development cycle.


Explanation

Further reading: Understanding the docker-compose.yml file









          

      

      

    

  

    
      
          
            
  
Explore the local environment


Introducing


	docker-compose run


	the statelessness of containerised environments






We’re going to dive in further to the local environment, and get used to some of the ways available to interact with it.

So far you have used two docker-compose commands:


	docker-compose up, to run the project


	docker-compose build, to make it rebuild the image




For this exercise, we will assume that you plan to install a reusable Django application into your project that
requires Pillow, the Python imaging library [https://pillow.readthedocs.io/en/stable/]. The steps you will follow
here are ones you might follow in a real-life example.


Use docker-compose run to run a command

First, is Pillow already installed and available in the environment? We can check:

docker-compose run web pip list





This runs the command pip list inside a web container.

You will find yourself using docker-compose run a lot. In this example, we’re using it as a “one-off” command. The
command:


	launched a container


	ran pip list in it


	shut down the container




(it created the container from the image just to run pip list).




Use docker-compose run to work inside a container

As you may already know, Pillow requires some third-party system libraries to support various image types. You will
find two sample images included in this documentation (note that your web bowser may not support the WebP format):


	a JPEG image [image: ''] - every browser should render this file


	a WebP image [image: ''] - not all browsers can render this; download it anyway




Download them, and copy them to your project. Let’s check which
images are supported, by starting a shell in the environment and trying to open them:

✗ docker-compose run web bash
Starting nodevops_db_1 ... done
root@59d5a381b0ff:/app#





In this case, the container is launched and remains running while we work in it. We can open a Python shell:

/app# python
Starting example_db_1 ... done
Python 3.6.8 (default, Mar 27 2019, 08:53:45)
[GCC 6.3.0 20170516] on linux
Type "help", "copyright", "credits" or "license" for more information.





Now in the Python shell, let’s see if it has JPEG support ready:

>>> from PIL import Image
>>> Image.open("test.jpg")
<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1024x768 at 0x7FA2A2E1C4A8>





That indicates that it does.

And WebP support:

>>> Image.open("test.webp")
/usr/local/lib/python3.6/site-packages/PIL/Image.py:2817: UserWarning: image file could not be identified because WEBP support not installed
  warnings.warn(message)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/usr/local/lib/python3.6/site-packages/PIL/Image.py", line 2818, in open
    raise IOError("cannot identify image file %r" % (filename if filename else fp))
OSError: cannot identify image file 'test.webp'





So, our environment can support JPEG images but not WebP. For that, we need to install the webp-dev system library.
Exit the Python shell, and use apt for the installation:

/app# apt-get update
Ign:1 http://deb.debian.org/debian stretch InRelease
[...]
Reading package lists... Done

/app# apt-get install libwebp-dev
Reading package lists... Done
[...]
Processing triggers for libc-bin (2.24-11+deb9u4) ...





You can start up Python in the shell again, and try once more:

>>> from PIL import Image
>>> Image.open("test.webp")
<PIL.WebPImagePlugin.WebPImageFile image mode=RGB size=540x405 at 0x7FADB5085A58>





Success!

And now you know that in order to use WebP images with Pillow, you’re going to need libwebp-dev installed in the
environment.




Discover the statelessness of containerised environments

However, try this:


	Exit the Python shell.


	Exit the Bash shell (this will exit the container).


	Start the environment again with Bash (docker-compose run web bash).


	Try opening the Python shell, and opening the image as you did before with Image.open("test.webp").




You may be surprised (or annoyed) to find that it fails, as if you had never installed libwebp-dev. This is because
every time your environment is launched, it is created anew from the image. Nothing you do to the container persists.
The container is stateless.

If we need something to persist in the environment, it will need to be baked into the image itself.

We will do this in the next section by editing the Dockerfile.







          

      

      

    

  

    
      
          
            
  
Edit the Dockerfile


Introducing


	the Dockerfile


	using RUN in the Dockerfile






Your Dockerfile will look much like this:

FROM divio/base:4.15-py3.6-slim-stretch

ENV PIP_INDEX_URL=${PIP_INDEX_URL:-https://wheels.aldryn.net/v1/aldryn-extras+pypi/${WHEELS_PLATFORM:-aldryn-baseproject-py3}/+simple/} \
    WHEELSPROXY_URL=${WHEELSPROXY_URL:-https://wheels.aldryn.net/v1/aldryn-extras+pypi/${WHEELS_PLATFORM:-aldryn-baseproject-py3}/}
COPY requirements.* /app/
COPY addons-dev /app/addons-dev/
RUN pip-reqs compile && \
    pip-reqs resolve && \
    pip install \
        --no-index --no-deps \
        --requirement requirements.urls

COPY . /app

RUN DJANGO_MODE=build python manage.py collectstatic --noinput





It contains a series of instructions that are used to build the project’s image. For example, the highlighted line
above runs a Django command to collect static files.


Use RUN to install a package in the image

We want to add the commands we used (apt-get update and apt-get install libwebp-dev to install libwebp-dev.
Add two lines as indicated:

FROM divio/base:4.15-py3.6-slim-stretch

RUN apt-get update
RUN apt-get install libwebp-dev -y

ENV PIP_INDEX_URL=${PIP_INDEX_URL:-https://wheels.aldryn.net/v1/aldryn-extras+pypi/${WHEELS_PLATFORM:-aldryn-baseproject-py3}/+simple/} \





By making a change to the Dockerfile, you’ve made a change to the instructions that build it. To use these new
instructions, you will need to rebuild the project:

docker-compose build





And now you can try once more to open a Python shell and open a WebP image as you did in the previous section. In fact
you can launch a Python shell directly with:

docker-compose run web python





and then run:

>>> from PIL import Image
>>> Image.open("test.webp")





And this time it will work - because you have baked support for WebP into the environment.


Explanation

Further reading: Understanding the Dockerfile









          

      

      

    

  

    
      
          
            
  
Install a new Python package


Introducing


	the requirements.in file






Next, we’re going to install a new package, Django Axes [https://github.com/jazzband/django-axes], into the project
(Django Axes keeps track of log-in attempts).

Maybe you are used to using pip to install Python packages into your environment. You can try it - launch a bash shell
in a container as you did previously, and run

pip install django-axes==3.0.3





It will work - but what do you think will happen after you exit the container and launch it again? Will django-axes
still be there? You can check with:

docker-compose run web pip list





As you will realise, pip installation (just like other operations on the environment) doesn’t survive the statelessness
of Docker containers.


Build the pip installation into your Docker image

You have already used the RUN command in the Dockerfile, so you could do the same again, adding:

RUN pip install django-axes==3.0.3





However, this is a bit crude and won’t look very nice when we have to add many packages. In fact, there are already
some lines in the Dockerfile that take care of pip installation for you:

ENV PIP_INDEX_URL=${PIP_INDEX_URL:-https://wheels.aldryn.net/v1/aldryn-extras+pypi/${WHEELS_PLATFORM:-aldryn-baseproject-py3}/+simple/} \
    WHEELSPROXY_URL=${WHEELSPROXY_URL:-https://wheels.aldryn.net/v1/aldryn-extras+pypi/${WHEELS_PLATFORM:-aldryn-baseproject-py3}/}
COPY requirements.* /app/
COPY addons-dev /app/addons-dev/
RUN pip-reqs compile && \
    pip-reqs resolve && \
    pip install \
        --no-index --no-deps \
        --requirement requirements.urls





These lines process the requirements.in file, in which you will already find some packages listed. Add:

django-axes==3.0.3





right at the end of the file. Now you will need to rebuild the project because you have made a change. Run:

docker-compose build





Now the image for the project contains the new requirement - this time you will see it if you run:

docker-compose run web pip list





because (like the WebP support in the previous step) you have baked it into the image, and it will be available in
any environment created from that image, from now on.




Configure the Django application for django-axes

The only configuration required for Django Axes is to add it to the INSTALLED_APPS in settings.py. This project
uses Divio’s optional Django project with auto-configured settings, so the way to do it is with:

# all django settings can be altered here

INSTALLED_APPS.extend([
    "axes",
])





You will need to run migrations:

docker-compose run web python manage.py migrate





And here’s Django Axes in the admin, which you will see if you start the project up again (docker-compose up):

[image: 'Django Axes in the admin']






          

      

      

    

  

    
      
          
            
  
Deploy your changes to the cloud


Introducing


	divio project deploy


	SSH access to the server






We’ve completed some local development. Let’s deploy it to the cloud.

We made changes to three files (Dockerfile, requirements.in, settings.py). So:

git add Dockerfile
git commit -m "Added WebP support"
git add requirements.in settings.py
git commit -m "Added Django Axes"
git push





On the project Dashboard, you will see that your new commits are listed:

[image: '2 undeployed commits']
You can deploy using the Control Panel, or by running:

divio project deploy





When it has finished deploying, you should check the Test server to see that all is as expected. Once you’re satisfied
that it works correctly, you can deploy the Live server too:

divio project deploy live





You have now worked through the complete workflow: project creation, local development, deployment. We’ll continue to
work in a cycle of development and deployment, introducing new concepts and techniques.


Explanation

Now that you have worked through a complete cycle, it would be a good time to pause and consider some of the
questions that have arisen.

Further reading: Ways of thinking about containerised development and deployment







          

      

      

    

  

    
      
          
            
  
Further development


Introducing


	divio project push db


	divio project push media






In this section we will continue to develop the project. We will install Django Photologue [https://django-photologue.readthedocs.io/en/stable/], a popular image gallery application. Some of these steps are
familiar, but it is valuable to reinforce them.


Install Django Photologue in the project

We will more or less follow the directions in the Django Photologue [https://django-photologue.readthedocs.io/en/stable/pages/installation.html] installation and configuration
instructions, and use the templates and styling from the Django Photologue demo project [http://django-photologue.net].


Requirements

Add the package to your requirements.in (always remembering to pin it):

django-photologue==3.10





(Check its dependencies [https://django-photologue.readthedocs.io/en/stable/pages/installation.html#dependencies] -
though in fact we don’t need to do anything here.)




Edit settings.py

Add the necessary applications to INSTALLED_APPS:

INSTALLED_APPS.extend([
    'axes',
    'photologue',
    'sortedm2m',
])








Edit urls.py

# -*- coding: utf-8 -*-
from django.conf.urls import url, include
from django.views.generic import TemplateView
from aldryn_django.utils import i18n_patterns
import aldryn_addons.urls


urlpatterns = [
    url(r'^$', TemplateView.as_view(template_name="homepage.html"), name='homepage'),
    url(r'^photologue/', include('photologue.urls', namespace='photologue')),
] + aldryn_addons.urls.patterns() + i18n_patterns(
    # add your own i18n patterns here
    *aldryn_addons.urls.i18n_patterns()  # MUST be the last entry!





)




Copy the templates and static files from the demo project

The templates and static files are at https://github.com/richardbarran/django-photologue/tree/master/example_project/example_project.

Copy the templates to your project’s templates directory, and the static files to static.






Build and migrate

As before, you will need to build and run Django migrations:

docker-compose build
docker-compose run web python manage.py migrate





And now you are ready to try out the project:

docker-compose up





At http://localhost:8000, you should now find the site:

[image: 'Django Photologue with no galleries or images']
In the admin, create a gallery or two at http://localhost:8000/en/admin/photologue/gallery/, and add some images to
them.

We installed WebP support earlier - so make sure that it can handle a WebP image (again, note that your browser may not
support WebP images).




Commit and deploy your changes

Once the local project is working as it should, commit the changes:

git add requirements.in settings.py urls.py static templates
git commit -m "Installed Django Photologue"
git push





And finally:

divio project deploy





You can now check the project on the Test server.




Push database and media

You will notice that the project on the cloud doesn’t contain any of your photos. That’s because although you pushed
your code, your content hasn’t been transferred.

To push the database to the cloud:

divio project push db





And the media files:

divio project push media





(in both cases you could add live to push them to the Live server).







          

      

      

    

  

    
      
          
            
  
Explore file handling


Introducing


	devolved media storage






In this section we will explore an aspect of containerised deployment that often takes people by surprise. It’s
related to the statelessness and lack of persistence of the containerised environment, and has various
implications, not just for deployment, but also for how your code handles files.


Disable volume mapping locally

For convenience, the docker-compose.yml file in your project maps some directories inside the container
environment to directories accessible from outside it. That’s how you can make changes to code and configuration using
your normal development tools, rather than having to work inside the container itself.

This is achieved with the volumes directive:

services:
  [...]
  web:
    [...]
    volumes:
      - ".:/app:rw"
      - "./data:/data:rw"





In order to understand the behaviour of containers better, we need to disable this.

Comment out the highlighted section.




Explore file behaviour

Launch a new bash shell inside the container:: docker-compose run web bash

In the container, create a new file (touch test_file.txt).

You’ll see it there if you run ls. You will be able to open it from a Python application too.

However, you won’t see it in your own environment - it stays inside the container. Similarly, if you add a file to the project directory in your environment, you won’t see inside the container. Exit the container, and start one up again:
the file won’t be there. It disappeared when the container disappeared.

Create a file once more in the container, and now, leaving your container running, start up another bash session, in a
new terminal window. You won’t see the file in that session either. It’s another container for the same project, but
the changes you make in the one container will not appear in any others.

Containers are their own little universe, as far as local file storage is concerned.

This has significant implications for your code. It means that you can’t use local file storage locally (what would
happen in a project that used two containers running in parallel as a way of increasing performance?).

Instead, as Django Photologue does, you have to ensure that your code doesn’t make assumptions about how images are
handled. In a Django project like this one, that means you should not use Django’s FileSystemStorage [https://docs.djangoproject.com/en/1.11/ref/files/storage/#module-django.core.files.storage]. Instead, you need to use django.core.files.storage.default_storage, which
devolves handling to an appropriate backend.

In this project, Aldryn Django takes care of setting up storage, on Amazon’s S3 system.


Further reading

Containerisation has implications for other aspects of coding too.

For some of them, see Some practical implications of containerisation.









          

      

      

    

  

    
      
          
            
  
Using an external service

We’ll continue with the development cycle, this time adding an external service to the project. The example we’ll use
is just a simple one: setting up logging with LogDNA [https://logdna.com]. All the same, it demonstrates some key
aspects of configuring external services - you will most likely need to:


	install some additional software specific to that service and the interfaces it provides


	obtain some sort of key to authenticate with the external service


	configure your settings appropriately





Explore your project’s logs

Your project emits logs. You can see them in the console when running locally. In addition, you can use the Logs
link on the cloud server to see logs from the Test and Live environments.


The cloud server logs

[image: 'Cloud logs']
These logs have some limitations.


	they are limited to 1000 lines


	they are undifferentiated (everything appears in one place)


	they do not update in real time




They’re adequate for basic purposes, but not really sophisticated enough for use in production for a complex, high-traffic project.




Server logs from a shell session

Perhaps you are used to SSHing into a server to run tail on a log file. This is quick and convenient, and perhaps
you’d like to do this with your containerised project. However, it’s not going to work well in a containerised
environment. When your project is running inside a container, you won’t have the same kind of access. For example,
you can’t rely on being able to SSH into it in the usual way., and your project may not even have a
persistent filesystem that it can save its logs to.

You can try it if you like, if your project has SSH access enabled:

[image: 'SSH access link']
- but you will soon find that the results are not satisfactory.






Configure logging as an external service


Subscribe to the service

If you don’t already have a LogDNA account, visit https://logdna.com and register for a free account. LogDNA will
provide you with an ingestion key.




Install the logdna package

The logdna package provides a new logging handler (logdna.LogDNAHandler) that will forward log messages to
LogDNA.

Add logdna to your project’s requirements and rebuild the project (docker-compose build).




Configure logging in settings.py

It’s beyond the scope of this document to go into details of logging configuration in Django. In summary, however:


	the Aldryn Django project you’re using a default logging configuration [https://github.com/divio/aldryn-django/blob/support/2.2.x/aldryn_config.py#L317-L360] already


	this makes the LOGGING dictionary available in settings.py


	we will extend that, by adding a new logger and handler configuration.




The LogDNA library provides a logging handler, via the class logdna.LogDNAHandler. Add the new configuation to the
end of your settings.py:

LOGGING["handlers"]["logdna"] = {
        'class': 'logdna.LogDNAHandler',
        'key': '<insert your ingestion key here>',
        'options': {
            'hostname': 'your-website-name',
            'index_meta': True
        }
    }





What we have done here is added the new handler, logdna (the name doesn’t actually matter) as a key to the dictionary.

Next, we need to configure the existing loggers, that actually produce the logs, to use the handler. In this example, we will append the logdna hander to the configuration of:


	the unnamed root logger ""


	the django logger


	the django.request logger




LOGGING["loggers"][""]['handlers'].append('logdna')
LOGGING["loggers"]["django"]['handlers'].append('logdna')
LOGGING["loggers"]["django.request"]['handlers'].append('logdna')





More information about configuring Django logging can be found in Django’s logging documentation [https://docs.djangoproject.com/en/1.11/topics/logging/].


Note

The precise way of doing this shown here is specific to Aldryn Django projects. For another service or a project
not using Aldryn Django, the principle would be the same, but the details would be different.






Test the new configuration

You can test your logging configuration locally, and once you have done that, deploy the site on the cloud once more.

Now the logs emitted by your application will be sent to LogDNA, where you can manage them better.









          

      

      

    

  

    
      
          
            
  
A complete example workflow

To help you practise the skills you have learned, here is an example of a complete workflow, using Wagtail [https://wagtail.io] (a very popular Django-based content management system), Azure’s Cognitive Services API, OpenCV
and more.

In this exercise, you will:


	create a project


	add and deploy some custom code


	integrate OpenCV for feature and face detection in images


	use a third-party Wagtail application that includes an API for image content recognition, via Microsoft Azue.





Create the project, on the cloud and locally

Create a new Wagtail project at https://control.divio.com/control/project/create/ (skip the Subscription page). Deploy the Test server.

Set the project up locally, with divio project setup <project id>.

Check that it runs as expected: cd into the project, and run:

docker-compose up





You can log into it at http://localhost:8000/django-admin, and see the Wagtail admin at http://localhost:8000/admin.




Build a new application


Create the application

Next, we’ll add a new “home” application to the project, by extending Wagtail’s Page model.

Run:


docker-compose run --rm web python manage.py startapp home




This issues the Django startapp command, inside the web container. You will find the files for the new home
application in the project.




Add the new HomePage model

In the new application (at home/models.py), add a new HomePage model (this example is copied straight from the
Wagtail documentation [http://docs.wagtail.io/en/v2.5.1/getting_started/tutorial.html]):

from django.db import models

from wagtail.core.models import Page
from wagtail.core.fields import RichTextField
from wagtail.admin.edit_handlers import FieldPanel


class HomePage(Page):
    body = RichTextField(blank=True)

    content_panels = Page.content_panels + [
        FieldPanel('body', classname="full"),
    ]








Add a template for it

Create a new file at home/templates/home/home_page.html:

{% extends "base.html" %}

{% load wagtailcore_tags %}

{% block body_class %}template-homepage{% endblock %}

{% block content %}
    {{ page.body|richtext }}
{% endblock %}








Add a base template for the whole project

As you can see, the template above extends "base.html". So, create templates/base.html in the root of the
project (not the home application):

<h1>{{ page.title }}</h2>

{% block content %}{% endblock %}










Configure Django settings

In the project’s settings.py, edit the INSTALLED_APPS list, to add the home application:

INSTALLED_APPS.extend([
    'home',
])








Create and run migrations

The project has new models, so we need to create and run migrations for them:

docker-compose run --rm web python manage.py makemigrations home





followed by:

docker-compose run --rm web python manage.py migrate





Check that you can now create new pages with a body field.




Deploy your changes

Git add, commit and push your changes to the Cloud.

Then you can either deploy the Test server using the Control Panel, or run:

divio project deploy








Implement image feature detection

Upload an image to Wagtail. You will find that you can draw a ‘focal point’ around the important part of an image,
such as the subject’s face. This is used when cropping automatically. But, Wagtail has a nice feature: automatic
detection of key areas of an image.

To enable the feature, add:

WAGTAILIMAGES_FEATURE_DETECTION_ENABLED = True





to the settings.py. Before it will work though, we need to add OpenCV to the project.


Install a package via requirements.in

In your project’s requirements.in, add:

https://files.pythonhosted.org/packages/7b/d2/a2dbf83d4553ca6b3701d91d75e42fe50aea97acdc00652dca515749fb5d/opencv_python-4.1.0.25-cp36-cp36m-manylinux1_x86_64.whl





(This is from https://pypi.org/project/opencv-python/.)




Install system libraries

We also need some system libraries for OpenCV. In the Dockerfile, add:

RUN apt-get update && apt-get install -y libsm6 libxrender1 libxext6





(after the # <DOCKER_FROM>...# </DOCKER_FROM> is a good place).




Rebuild

The changes you have made require that the project be rebuilt:

docker-compose build





Once completed, you should be able to upload an image and see the automatic feature detection.






Implement image content detection

The third-party wagtailaltgenerator [https://pypi.org/project/wagtailaltgenerator/] is a nice addon for Wagtail.

Before you use it, you need to obtain a key for Azure cognitive services [https://azure.microsoft.com/en-gb/] - you
can get a free account and key. Once you have your key:


	add wagtailaltgenerator to the requirements.in


	add wagtailaltgenerator to the INSTALLED_APPS




Then add key to the setting.py, for example:

COMPUTER_VISION_API_KEY = '99265265444f147baecb737f38074bca'
COMPUTER_VISION_REGION = 'centralus'





Once again:


	docker-compose build


	test locally


	push to cloud


	deploy on cloud




and finally, once you’re happy with it on the Test server, you can also deploy to Live:

divio project deploy live











          

      

      

    

  

    
      
          
            
  
Further reading



	What happens when a project is created

	What happens during the Docker deployment process

	What happens during the local set-up process

	The docker-compose.yml file

	The Dockerfile

	Ways of thinking

	Some practical implications of containerisation

	Some Divio-specific notes









          

      

      

    

  

    
      
          
            
  
What happens when a project is created

When a new project is created, you will see someting like this on the project dashboard:

[image: 'New project in the Dashboard']
As implied by the 6 undeployed commits message, the new project has a repository. This is what the infrastructure
does:


A repository is created

The system creates a new repository. As an application developer, you could in fact have created that repository and
everything in it yourself, but in this case, it’s created for you. You might even prefer to, and on some platforms you
would be required to. For now, since the Divio Control Panel can do this for us, let’s work with it and consider
alternatives later.

This Git repository contains all the instructions needed to build a Docker image for the project. It contains a
Dockerfile, describing the commands that must be run to build it, a requirements.in file, listing the Python
packages that will need to be installed, and so on.

This repository defines the application, the part that you as an application developer will be responsible for and
will want to get your hands on. To the greatest extent possible, this application needs to be platform-independent.
It should not care whether it is to be deployed on Divio or on some other platform (just like your skills, this
application should be transferable with minimum extra work).


Divio Cloud developer handbook links


	Version control for your Divio projects [http://docs.divio.com/en/latest/background/project-version-control.html]


	How to configure a Git remote for your project [http://docs.divio.com/en/latest/how-to/resources-configure-git.html#configure-version-control]









Services are provisioned

The Control Panel has provisioned services for the new application. (As an application developer who doesn’t want to be
doing DevOps, you should be thrilled to discover the Cloud Platform has taken care of this for you.)

The database, media storage, web server and other services have not only been set up for you, your project is ready
to use them right away.

It has done this for two environments, Test and Live. On Divio, your Test server is a private staging
environment, while Live is the public server.

Other Cloud providers may offer a similar arrangement, but in any case the important point is that given a single
respository, you can deploy it in multiple environments, and all Cloud hosting providers will make this easy.




Environment variables are configured

You may be used to including things like database credentials in settings files, or perhaps in multiple settings
files for different environments. It’s a good idea to keep those things out of your respositories. They aren’t
code, they are configuration, and they belong to environments.

So, we store them in environment variables, and each environment has its own set of variables. All the repository
contains is a way to look for the variables and turn them into the appropriate Django settings.


Divio developer handbook links

Divio CLI reference [http://docs.divio.com/en/latest/reference/divio-cli.html]









          

      

      

    

  

    
      
          
            
  
What happens during the Docker deployment process

This is a two-part process.


	First an image is built. You can think of an image as a template.


	Next, a container is deployed. You can think of containers as instances that are created from the template.





Building the image


	The Control Panel clones the Git repository.


	Docker follows the instructions in the Dockerfile to build the image:


	it uses a pre-built Docker image to install system components (DevOps work, in other words)


	it uses pip to install the Python requirements


	it runs the Django collectstatic command to copy static files to the right place.











Deploying the container


	The image is now built, and the Control Panel takes over again. It creates a Docker container (an instance of the
image), and provides it with the required environment variables


	Inside the container:


	it launches Django


	runs any database migrations that need to be run.






	Then the Control Panel checks that the new container is running as it should be, and if so it declares the deployment
successful.




The site is now available, connected to its web server, database and media storage.




Deployment on other platforms

On different platforms, the deployment process can be a little different, but the basic principle is the same: the
system builds an image from the repository, creates a container from the image and launches it in an environment, wired
up to its backing services.







          

      

      

    

  

    
      
          
            
  
What happens during the local set-up process

What happens when you set up the project locally is almost the same as what happens when it’s deployed on the
Cloud, and you can watch it happening in the console.


	The Divio CLI uses Git to clone the repository.


	Docker uses the instructions in the Dockerfile to build the image:


	it uses a pre-built Docker image to install system components


	it uses pip to install the Python requirements


	it runs the Django collectstatic command to copy static files to the right place.






	Finally, the Divio CLI will pull down the database and media from your Test server.




The image is now built, and is waiting to be used.


Docker Compose and docker-compose.yml

Cloud deployments are handled (orchestrated) by the Control Panel. There are various orchestration systems - as the
name suggests, orchestration means co-ordinating all the various components of project in the right order so that they
add up to a functional whole.

In your local environment, there are a number of Cloud components that you don’t have:


	a Control Panel


	a database cluster


	a media host


	a public web server and load-balancer




So we have to do things quite differently locally.

Instead of the Control Panel, Docker Compose orchestrates the deployment. Instead of a database cluster, Docker Compose
sets up a Postgres database inside another Docker container on your computer. And by running the Django project in
DEBUG mode, Django itself takes care of publishing media and providing a web server (more on this later).







          

      

      

    

  

    
      
          
            
  
The docker-compose.yml file

[image: 'Your local project']
When you run your project (with docker-compose up or other commands), Docker Compose will use this file to
orchestrate its components.

Below we’ve highlighted the relevant parts of the file - you don’t need to go through it all right now, but you will
probably want to come back to it later.


Services or containers

services:
  web:
    [...]
  db:
    [...]





The file defines two services - in effect, two containers that Docker Compose will
launch. One is the web service or container, containing your Django project. The
other is the db container, our local stand-in for the database cluster that would
be available on the Cloud.




The web service

build: "."





Docker Compose needs to know where to find the instructions to build the image for this container - the answer is right
here, because that’s where the Dockerfile is.

command: python manage.py runserver 0.0.0.0:80





When the container starts up, start the Django runserver on port 80.

ports:
  - "8000:80"





… and map that port 80 inside the container to port 8000 outside.

env_file: .env-local





Read the file .env-local for any environment variables.

links:
  - "db:postgres"





Resolve the hostname postgres to the db container.




The db service

image: postgres:9.6-alpine





This container is based on a pre-built, off-the-shelf image, one specifically created to run Postgres 9.6 on Alpine
Linux.

environment:
  POSTGRES_DB: "db"





When the container is launched, its environment should include the POSTGRES_DB variable with the value db.







          

      

      

    

  

    
      
          
            
  
The Dockerfile

Let’s take a look at the Dockerfile. This is the file that defines your
web application image. (The db image doesn’t have a Dockerfile
associated with it - it’s a pre-built image.)

[image: 'The Dockerfile']
The Dockerfile in this project is defined when the project is created, using the options you selected. (It’s one of the
Divio standard Dockerfiles, so inevitably it contains some Divio-specific components - but we can ignore those, and
look at ones you might use with any Docker host.)


The FROM instruction

FROM divio/base:4.15-py3.6-slim-stretch





This is the pre-built image that our project is based on. It’s getting it from the Docker Hub [https://hub.docker.com/r/divio/base], where you can see that the codebase for this image is published on GitHub [https://github.com/divio/ac-base/blob/4.15-py3.6-slim-stretch/py3.6-slim-stretch/Dockerfile].

Not only that, you can also see that it, in turn, is based on another image: python:3.6.8-slim-stretch. These
images form the layers of the Docker project, and they go down all the way to the operating system components. It’s a
very handy system for building what you need in a modular and repeating way.




Python package installation

First, ENV declares a couple of environment variables:

ENV PIP_INDEX_URL=${PIP_INDEX_URL:-https://wheels.aldryn.net/v1/aldryn-extras+pypi/${WHEELS_PLATFORM:-aldryn-baseproject-py3}/+simple/} \
    WHEELSPROXY_URL=${WHEELSPROXY_URL:-https://wheels.aldryn.net/v1/aldryn-extras+pypi/${WHEELS_PLATFORM:-aldryn-baseproject-py3}/}





Then we copy some files into a working directory within the image:

COPY requirements.* /app/
COPY addons-dev /app/addons-dev/





And run pip instructions to install the requirements:

RUN pip-reqs compile && \
    pip-reqs resolve && \
    pip install \
        --no-index --no-deps \
        --requirement requirements.urls








Copy miscellaneous files

Various files need to be copied into the image:

COPY . /app








Run collectstatic

collectstatic will do the same for Django’s static files:

RUN DJANGO_MODE=build python manage.py collectstatic --noinput











          

      

      

    

  

    
      
          
            
  
Ways of thinking

While you have been following the tutorial steps, you will have encountered some key aspects of containerised
development and deployment that make a difference to how you need to work.

In short, when you install something into a system, say using apt or pip, it will persist - remain installed -
for the lifetime of the system. That could be indefinitely.

At the same time, one rarely rebuilds a server - or even a virtual server or a virtualenv - from scratch. Once it
has been created, it is added to, maintained, upgraded and so on.

However, containers are by their nature short-lived and impermanent, and they are recreated from scratch very often.

Here I will recapitulate some of the implications of this and introduce some new ways to help think about them.


Persistence and non-persistence

The environment of containerised project, unlike that of a virtualenv for example, does not persist.

If you activate a virtualenv, install something in it, and come back to activate it again later, you will find your
installed package still in it, because the environment persists.

The changes will last forever.

The changes in a containerised environment do not persist. If you activate the environment, install something
in it and come back to activate it again later, you will find that what you installed is nowhere to be seen.

The changes to a container last only as long as the lifetime of that particular container; as soon as the container is
shut down, the changes will be lost.

Understanding this is absolutely key to understanding how to work with containerisation.




Traditional and containerised development and deployment

In ‘traditional’ development and deployment, you’re building a system that you will eventually deploy. This is your
work of art, your precious construction. It’s the expensive final end of your labours, that you’ve worked hard for. You
started with the basics, added on to them, made multiple refinements, until finally your creation was complete and
ready to face the world.

In containerised deployment, your final product is cheap and disposable. It’s not precious at all, it’s just an
instance, infinitely reproducible, of an image, and what’s precious are the instructions that are followed to
assemble that image.

What matters is not the thing we build, but the instructions we build it with.

So: stop working on the construction; work on instruction.

In a way, this is the central lesson of this workshop, and once you have internalised it, you will find working with
containerisation much easier.




Containers are cheap

Containers are:


	cheap: it costs almost nothing (time, computing resources, money) to create a new one


	disposable: throw them away when you finish using them, as soon as you finish using them; don’t keep them around


	reproducible: if you can build one, you can build a thousand new ones with the same effort, and they’ll all be
exactly the same


	unchanging: once created, they stay the same until they are destroyed; no important changes are made to them or in
them that must be retained for the future







Instructions are expensive

On the other hand, whereas otherwise you could start with the basics and then refine and massage them into shape - you
can’t take that attitude any more. What you start with, when you build your containers, must be perfect. You must
come up with the perfect set of instructions, because once you set the build process in motion, what you get will be
what you asked for, and you won’t have the opportunity to fix things up as you go along.

It’s the difference between preparing for a night camping at the bottom of your own garden, and getting a rocket ready
for a trip to the moon.

One bit of good news is that Platform-as-a-service systems provide most of the instructions (well-tested,
expertly-written) for you - you only need to make your amendments.




Advantages and disadvantages for the developer

You may feel that this way of working doesn’t only bring advantages, and that’s true - you do lose something.

The disadvantage: this is a slower and less streamlined, less interactive way to work. There’s initially more
overhead from Docker and its set-up.

The advantage: you’ll quickly gain back the little extra effort you spend, and more.

In fact you very quickly get to used to not thinking:


I will make the changes on the Test server [or perhaps, in the development environment].




and instead start thinking:


I’ll write the change to the project repository and rebuild.





Practical implications

Until you are fully used to these ways of thinking, some of their implications will occasionally take you by
surprise.

For some of them, see Some practical implications of containerisation









          

      

      

    

  

    
      
          
            
  
Some practical implications of containerisation

In Ways of thinking, we discuss some general implications for thinking about development and deployment when
using containerisation.

Here, I will discuss some more practical implications, in some cases specifically for the Aldryn Django project you are
working with, that you will already have encountered, but are worth considering again.

There are many advantages to containerisation, such as knowing that the site running on your own computer is running in
the same environment (as far as possible) as it will be in deployment. But this means that it’s not as directly
accessible to you may expect - it’s not running directly on your computer, but in another environment on your
computer.

This can take some getting used to, and it does mean that often an extra step will be required to interact with the project.

For example…


Debugging - what are you looking at?

Suppose that the application in our container is misbehaving, and we need to do some interactive debugging in the
Django shell. Once again, instead of doing python manage.py shell, we need to do:

docker-compose run web python manage.py shell





That’s fine - but remember, the shell you have just invoked is a shell in a brand new instance, not in the actual
instance that was exhibiting the troublesome behaviour. The new shell is not receiving the same traffic or load as
the “real” one. It’s not like SHHing into a live server to find out what it’s doing. his is why making good use of
logging is the approach to take.




You can’t just SSH into your server any more

It’s very nice to be able to SSH into a live server to see what’s going on, to inspect a Python process or even see
what the web server or operating system are doing. It’s very reassuring, and a quick way to get insights and maybe fix
things.

You can’t do that any more, because you don’t really have a server any more. All you have is a containerised environment that is dedicated to running your application and all the other components are elsewhere.

For example, on Divio, although there is a link to SSH into a live container, it’s not the same thing as being
able to SSH into your server. It’s just a new container that has been spun up specifically for you to SSH into, just as
was the case when you executed docker-compose run commands.

That means you will never be able to use it to see the requests that are hitting your site - they are going elsewhere.

You might ask, “Why can’t I SSH into the container that is receiving those requests?” In fact there’s no guarantee
that there is a single container that’s receiving them. In many projects, multiple, parallel containers handle the requests allocated to them by a load-balancer.

Instead, you have to get used to gaining insights in a different way. The web containers report to a log; you can also
make use of services such as Sentry.

These are less immediate and interactive - but in the long run, they are more valuable tools.




Interacting with the database

On the other hand, suppose you do a .save() on an object in the shell. Now this makes a change to the database.
The database, unlike the environment in a container (but like, for example your media storage) is and needs to be
persistent . So that change will be picked up by every container that connects to the database. To achieve this, the
database stores its data outside the container.

As you can see, containerisation obliges us to think not about “the server” but about “the services”. A database is
a different kind of thing from an application container; it behaves differently and has different needs. Once
again, it can be difficult to start thinking in the new way, but when you do, it’s liberating.

You may be used to connecting to your live database to run queries using the tool of your choice, or even to
make changes directly. That’s no longer possible; the database is only accessible from within your application.
Added security, reduced convenience.

You can SSH into a container and use the dbshell or psql client - but the
price of containerisation is more distance between you and the services you’re relying on.

You can of course also use other tools to interact with the database, such as Django’s dbshell:

docker-compose run web python manage.py dbshell





Or the psql tool (Divio projects use Postgres, but the same principle applies for other databases):

docker-compose run web psql -h postgres -U postgres db





Note that the tools these commands launch are tools inside the web container, talking to a service inside a
db container. What if you have a favourite GUI tool on your own computer, that you want to connect to the database
running inside its container?

This becomes bit more complex. First you must:


Expose the database’s port

The database is tucked away inside its own container. In order to the connect to the database from a tool running
directly on your own machine, you will need to expose its port (5432) on that container, by adding a ports section
to the db service in docker-compose.yml that maps the port to your host:

db:
    image: postgres:9.4
    ports:
        - 5432:5432





This means that external traffic reaching the container on port 5432 will be routed to port 5432 internally.

The ports are <host port>:<container port> - you could choose another host
port if you are already using 5432 on your host.

Then restart the db container with: docker-compose up -d db




Connect to the database

You will nned then to provide the connection details to the Postgres client. The connection port will be 5432 of
course.

For a Divio project, the other values will be:


	username: postgres


	password: not required


	database: db


	address: 127.0.0.1




Now you can access the database using your Postgres tool of choice. For example, if you’re using the psql command
line tool, you can connect to the project database with:

psql -h 127.0.0.1 -U postgres db






Divio Cloud developer handbook links


	How to interact with your project’s database [http://docs.divio.com/en/latest/how-to/interact-database.html]











You can’t store media files the way you once did

Although container instance running your application will have its own local file storage, this will be independent
of each of the others, and it won’t persist - once that instance ceases to exist, so will the files. That storage will
also be inaccessible to any other instances of the application.

This means a project’s applications, cron jobs or other process can’t expect to save files to its
local storage, and then expect to find them again: if you save files to local storage you will lose them.

Instead, use the media storage - Amazon S3 - that is provided as a backing service to your project.

You can do this by using Django’s storage APIs. The storage defined by Django’s
django.core.files.storage.default_storage will do the right thing.

See Working with your project’s media storage in Python applications [http://docs.divio.com/en/latest/reference/work-media-storage.html] and How to interact with your project’s media
storage [http://docs.divio.com/en/latest/how-to/interact-storage.html] for more.




Interact with a running container

In all the examples so far, we have fired up new containers with docker-compose run ... whenever we needed to use
one, with the caveat that each time it’s a brand new container with no memory of what has happened in or to other
containers.

You can in fact interact directly with a container that is already running. First, you need to know its name; run:

docker ps





and look for the name, which might be something like example_web. Now you can do:

docker exec -i example_web python manage.py shell





(The -i flag gives you an interactive console.)

This gives you some persistent access into to a container, and can be useful when you do need that persistence while
developing or debugging - but it only persists for the lifetime of that particular container.




Common operations

When do you need to…

If you:


	add a new module that hasn’t yet been loaded


	change your local environment variables (in .env-local)




you will need to restart the local server.

It’s also necessary to restart the local sever when you make a change to existing Python code, but the Django runserver
restarts (just as usual) to reload it.

If you make a change to:


	your Python requirements


	your Dockerfile


	your docker-compose.yml file




you will (in some cases, may) need to run docker-compose build to build them into the image.







          

      

      

    

  

    
      
          
            
  
Some Divio-specific notes


The addons system

If you have a look at your settings.py file, you will find that it looks a bit different.

This is because in pre-packaged Divio project (recommended) full use is made of the Divio addons system.

Your Django project contains Django (a completely standard Django installed via pip), but it also contains Aldryn
Django. Aldryn Django is a wrapper for Django. It installs Django, and provides some convenience code to configure it
automatically for the Divio environments.

For example, you will see that there is no DATABASES setting in the file. In fact, all the settings are there in the
module; try this:

✗ docker-compose run --rm web python manage.py shell
>>> from django.conf import settings
>>> settings.DATABASES
{'default': {'NAME': 'db', 'USER': 'postgres', 'PASSWORD': '', 'HOST': 'postgres', 'PORT': 5432, 'CONN_MAX_AGE': 0, 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'ATOMIC_REQUESTS': False, 'AUTOCOMMIT': True, 'OPTIONS': {}, 'TIME_ZONE': None, 'TEST': {'CHARSET': None, 'COLLATION': None, 'NAME': None, 'MIRROR': None}}}






How does this work?

In an application that has been installed via an addon (a wrapper), at least some of its configuration can be taken
care of by the wrapper, in its aldryn_config.py file. For example, the `Aldryn Django DATABASES setting
<https://github.com/divio/aldryn-django/blob/support/1.11.x/aldryn_config.py#L110-L129 >`_.

This looks for environment variables providing the database credentials, allowing the cloud Test and Live environments
to supply them knowing that Django will pick them up.

Locally, DATABASES is set in .env-local, and functions in just the same way.

The lines:

import aldryn_addons.settings
aldryn_addons.settings.load(locals())





in your settings.py import all the settings that are automatically configured by the addons system.






You don’t have to use this

It’s important to note that using this is entirely optional. You don’t need to use Aldryn Django, or the addons
system, and you can configure all your settings manually or otherwise if you prefer.

However, not only can you use it in the case of packages such as Aldryn Django, you can even create wrappers for your
own applications.




Some advantages of using the addons system

Managing settings this way does have some advantages:


Seamless operation across different environments

Whether in the local, Test or Live environments, Django will have the correct value, provided by the environment. You
- as an application programmer who doesn’t want to do DevOps - now longer need to care whether your database or media
settings are right, you can just get on with your application programming.




Settings are optimised for the platform

The settings in the Divio addons are optimised for the platform - they’ve been configured expertly and on the basis of
experience. You don’t need to be responsible for them.




Settings can be exposed and managed via the Control Panel

In the project dashboard on the Control Panel, take a look at Addons > Aldryn Django > Configure. You’ll see that
some settings can be exposed in the GUI.




Settings can be configured programmatically

Some settings need to be added in just the right place. You can ensure that for example a MIDDLEWARE for an
application will be inserted just where it needs to go.









          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
Documentation standards

Wrap ReStructured Text source to 100 columns.


Headings


Sub-headings


Sub-sub-headings


Sub-sub-sub-headings










Intersphinx

This documentation knows how to link to documentation in:


	Python


	Django


	django CMS




using Intersphinx.

Examples:


	:ref:`Link to a reference <python:comparisons>`


	:mod:`Link to a module <python:datetime>`


	:doc:`Link to a document <django:topics/email>`


	:class:`Link to a class <django-cms:cms.models.Page>`










          

      

      

    

  _images/project-deployed.png
BACK TO OVERVIEW

Dashboard

Activity

Subscription
Collaborators
Addons
Domains
Backups

Settings

Env Variables

Cron Jobs

Maintenance 5™

Doctor ALPHA

Repository

NoDevOps v
TEST SERVER LOGS 4
https://nodevops-stage.us.aldryn.io &
STORAGE 0 Bytes Max. 512 MiB
SSH

ssh -p 22 nodevops-test-fe872e70db... COPY

DEPLOY v

@ All commits deployed

@ Last deployment successful at 23.10.2019, 12:27

LIVE SERVER LOGS 4

https://nodevops.us.aldryn.io

L1l In order to see server metrics, you need to have deployed
your live server.

SSH
ssh -p 22 nodevops-live-13c36ca387... COPY

DEPLOY v

6 undeployed commits

@ Live server not deployed yet.





_images/project-files.png
[ AON ] ~ docker-compose.yml — plain-django (git: master)
1 | version: "2" [ plain-django -
2 > i git
3v| services: » [ addons
:' we:;ﬂd: w » [ addons-dev
6V links: > [ data
7 - “db:postgres" > [ private
8v ports: » [ static
9 - "8000:80" » [ templates
10v volumes: aldryn
o - U.i/appin” B .dockerignore
12 - "./data:/data:rw" —
13 command: python manage.py runserver 0.0.0.0:80 | .env-local
14 env_file: .env-local 1 .gitignore
15 I data.tar.gz
oMY dbf X ~ docker-composeyml  x
17 :unage: postgres:9.6-alpine Dockerfile
18v environment: -
19 POSTGRES_DB: "db" £ manage.py
20y volumes: _ migrate.sh
21 - ".:/app:rw" ~ Procfile
22 |#) requirements.in
# settings.py
# urls.py
# wsgi.py
Line: 1| YA. {| SoftTabs: 2 v [ § { | Symbols @+ % CQep






_images/macintosh.png





_images/photologue-installed.png
Photologue example project Home  Galleryviews~  Photo views~

Welcome to the Photologue example project

This is a quick demo of the Photologue application - just click on the menu options above.

It uses the built-in Bootstrap-compatible templates that you can use to get you quickly up and running, or completely replace with your own templates.





_images/project-slug.png
NoDevOps v

PROJECT SLUG

nodevops COPY LoGs @

https://nodevops-stage.us.aldryn.io &





_images/project-undeployed.png
BACK TO OVERVIEW

Dashboard

Activity

Subscription
Collaborators
Addons
Domains
Backups

Settings

Env Variables

Cron Jobs

Maintenance 5™

Doctor ALPHA

Repository

NoDevOps v

TEST SERVER LOGS 4

https://nodevops-stage.us.aldryn.io

L1l In order to see server metrics, you need to have deployed
your test server.

SSH
ssh -p 22 nodevops-test-fe872e70db... COPY

DEPLOY v

6 undeployed commits

@ Test server not deployed yet.

LIVE SERVER LOGS 4

https://nodevops.us.aldryn.io

L1l In order to see server metrics, you need to have deployed
your live server.

SSH
ssh -p 22 nodevops-live-13c36ca387... COPY

DEPLOY v

6 undeployed commits

@ Live server not deployed yet.





_images/project-link.png
TEST SERVER

https://nodevops-stage.us.aldryn.io






_images/project-logs-button.png
TEST SERVER LOGS [ :





_images/test.jpg





_images/windows.png





_images/dockerfile.png
[ BON ] || Dockerfile — plain-django (git: master)

Dockerfile

© o N OoOuswN R

WWWwWwwwwwwwNNNNNNNNNNRERRRRR B B B 2
© O®NOUAWNROOOIIOUSAWNRS ©ONOUHWNRS

# <WARNING>

# Everything within sections like <TAG> is generated and can
# be automatically replaced on deployment. You can disable
# this functionality by simply removing the wrapping tags.

# </WARNING>

# <DOCKER_FROM>
FROM divio/base:4.15-py3.6-slim-stretch
# </DOCKER_FROM>

# <NPM>
# </NPM>

# <BOWER>
# </BOWER>

# <PYTHON>
ENV PIP_INDEX_URL=${PIP_INDEX_ URL:-https://wheels.aldryn.net/v1l/aldryn-extras+pypi/${WHEELS_PLATFORM:-aldryn-baseproject-py3}/+simple/} \
WHEELSPROXY_URL=${WHEELSPROXY_URL:-https://wheels.aldryn.net/v1l/aldryn-extras+pypi/${WHEELS_PLATFORM:-aldryn-baseproject-py3}/}
COPY requirements.x /app/
COPY addons-dev /app/addons—dev/
RUN pip-reqs compile && \
pip-regs resolve && \
pip install \
—-no-index ——no-deps \
—-requirement requirements.urls
# </PYTHON>

# <SOURCE>
COPY . /app
# </SOURCE>

# <GULP>
# </GULP>

# <STATIC>
RUN DJANGO_MODE=build python manage.py collectstatic —-noinput
# </STATIC>

[ plain-django VNI A

> il .git

» [ addons

» [ addons-dev
» [ data

» [ private

» [ static

» [ templates
.aldryn
.dockerignore
.env-local
.gitignore
data.tar.gz
docker-compose.yml
Dockerfile

1) [ I |

manage.py
migrate.sh
Procfile

(PO

requirements.in
settings.py
urls.py

wsgi.py

¥ | | (@)

5:13 | Dockerfile { | SoftTabs: 2 v | £ | Symbols






_images/linux.png





_images/axes.png
AXES

Access attempts #' Change

Access logs #' Change





_images/deploy-button.png
SSH
ssh -p 22 nodevops-test-fe872e70db... COPY

DEPLOY v

@ All commits deployed

@ Last deployment successful at 23.10.2019, 12:27





_images/log-in.png
DIVIO

Standard login

Username

Password

LOG IN WITH DIVIO






_static/ajax-loader.gif





nav.xhtml

    
      Table of Contents


      
        		
          But I never wanted to do DevOps!
        


        		
          Prerequisites
          
            		
              Required software
            


            		
              Hardware requirements
              
                		
                  Macintosh users 
                


                		
                  Windows users 
                


                		
                  Linux users 
                


              


            


          


        


        		
          The workshop
          
            		
              Installation
              
                		
                  Docker and Docker Compose
                


                		
                  The Divio CLI
                


              


            


            		
              Create a project to work with
            


            		
              Deploy your project
              
                		
                  Visit the Test site
                


              


            


            		
              Set up and run your project up locally
              
                		
                  Log in with the CLI
                


                		
                  Upload your public key to the Divio Control Panel
                


                		
                  Set up your project locally
                


              


            


            		
              Control the local project with docker-compose
              
                		
                  docker-compose up and stop
                


                		
                  docker-compose build
                


              


            


            		
              Explore the local environment
              
                		
                  Use docker-compose run to run a command
                


                		
                  Use docker-compose run to work inside a container
                


                		
                  Discover the statelessness of containerised environments
                


              


            


            		
              Edit the Dockerfile
              
                		
                  Use RUN to install a package in the image
                


              


            


            		
              Install a new Python package
              
                		
                  Build the pip installation into your Docker image
                


                		
                  Configure the Django application for django-axes
                


              


            


            		
              Deploy your changes to the cloud
            


            		
              Further development
              
                		
                  Install Django Photologue in the project
                


                		
                  Build and migrate
                


                		
                  Commit and deploy your changes
                


                		
                  Push database and media
                


              


            


            		
              Explore file handling
              
                		
                  Disable volume mapping locally
                


                		
                  Explore file behaviour
                


              


            


            		
              Using an external service
              
                		
                  Explore your project’s logs
                


                		
                  Configure logging as an external service
                


              


            


            		
              A complete example workflow
              
                		
                  Create the project, on the cloud and locally
                


                		
                  Build a new application
                


                		
                  Configure Django settings
                


                		
                  Create and run migrations
                


                		
                  Deploy your changes
                


                		
                  Implement image feature detection
                


                		
                  Implement image content detection
                


              


            


          


        


        		
          Further reading
          
            		
              What happens when a project is created
              
                		
                  A repository is created
                


                		
                  Services are provisioned
                


                		
                  Environment variables are configured
                


              


            


            		
              What happens during the Docker deployment process
              
                		
                  Building the image
                


                		
                  Deploying the container
                


                		
                  Deployment on other platforms
                


              


            


            		
              What happens during the local set-up process
              
                		
                  Docker Compose and docker-compose.yml
                


              


            


            		
              The docker-compose.yml file
              
                		
                  Services or containers
                


                		
                  The web service
                


                		
                  The db service
                


              


            


            		
              The Dockerfile
              
                		
                  The FROM instruction
                


                		
                  Python package installation
                


                		
                  Copy miscellaneous files
                


                		
                  Run collectstatic
                


              


            


            		
              Ways of thinking
              
                		
                  Persistence and non-persistence
                


                		
                  Traditional and containerised development and deployment
                


                		
                  Containers are cheap
                


                		
                  Instructions are expensive
                


                		
                  Advantages and disadvantages for the developer
                


              


            


            		
              Some practical implications of containerisation
              
                		
                  Debugging - what are you looking at?
                


                		
                  You can’t just SSH into your server any more
                


                		
                  Interacting with the database
                


                		
                  You can’t store media files the way you once did
                


                		
                  Interact with a running container
                


                		
                  Common operations
                


              


            


            		
              Some Divio-specific notes
              
                		
                  The addons system
                


                		
                  You don’t have to use this
                


                		
                  Some advantages of using the addons system
                


              


            


          


        


      


    
  

_static/comment-close.png





_images/2commits.png
SSH
ssh -p 22 nodevops-test-fe872e70db... COPY

DEPLOY v

2 undeployed commits





_static/comment.png





_static/comment-bright.png





_static/file.png





_static/down-pressed.png





_static/down.png





_static/minus.png





_static/plus.png





_static/up-pressed.png





_static/up.png





